

BEYOND TRADITIONAL ERGONOMICS

Identifying, Understanding, and Addressing Injury Risks

April 16, 2024

- Derived from the Greek: *ergon* (work) and *nomos* (laws)
- Literally the "the laws or study of work."

"The Science of Work"

HIERARCHY OF CONTROLS

THE VALUE OF ERGONOMICS

- **Optimization of job performance** safety, quality and productivity
- Enhance effectiveness and efficiency
- Enhance desired human values
 - improved safety
 - reduced fatigue
 - increased comfort
 - increased job satisfaction
 - improved quality of life
- Fit the "work" to the individual decrease stress on the body

Decreased stress = decreased injury/illness

ERGONOMICS IN MEAT PROCESSING

1986 – "MET Program" was released

- "The Medical Ergonomics Training Program: A Guide for the Poultry Industry"
- Guidance on
 - Training
 - Ergonomics
 - Medical Intervention
- Specific steps on implementing the three key points

1993 – "Ergonomics Guidelines for the Meatpacking Industry"

• Published by OSHA and the meat industry instituted industry wide programs to address high rate of MSD's

ERGONOMICS IN MEAT PROCESSING

Program Elements

- Worksite Analysis
- Hazard Prevention and Control
- Medical Management
- Training and Education

LOOKING DEEPER

Examine jobs/tasks critically

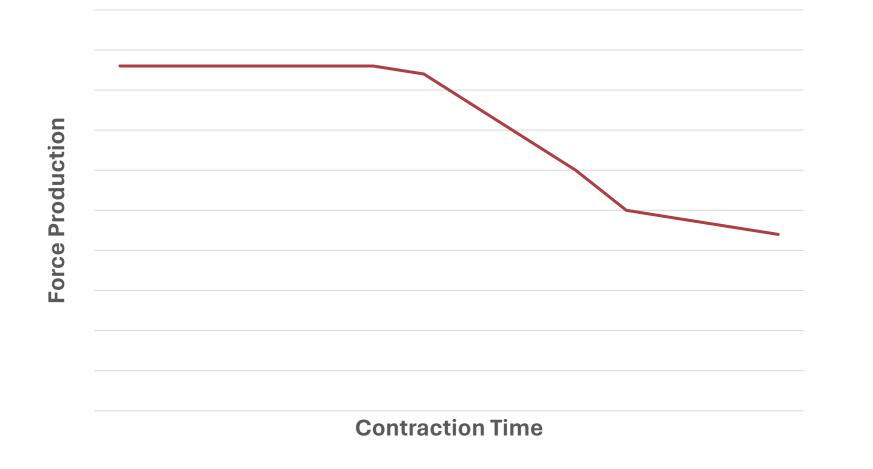
Framework for assessing the needs of your worksite.

- Process
 Training
- Posture
 Environment
- Workstations
 Administrative Controls
- Equipment
 Employee Feedback
- Material Handling

PROCESS

Process and Analysis is the First Step

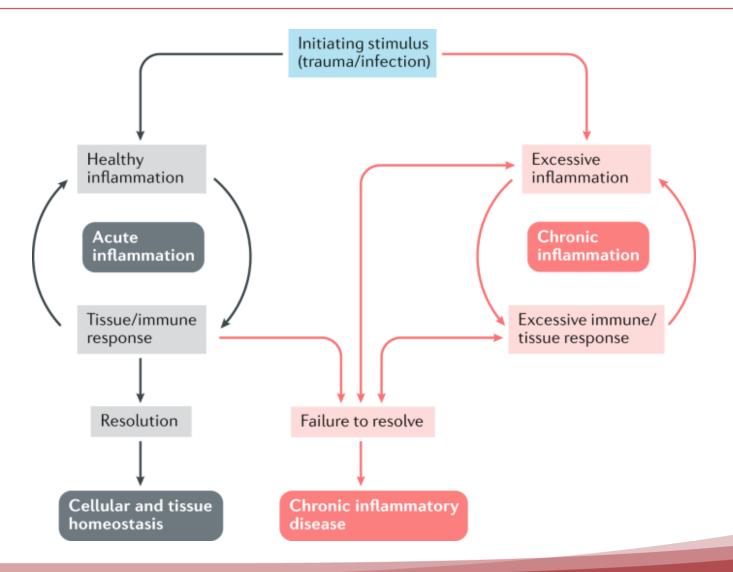
Expectations for the position


- Pace of work
- Repetitions
 - Time per repetition / cycle rate
 - Efficiency of task
 - Quality of product

WHY?

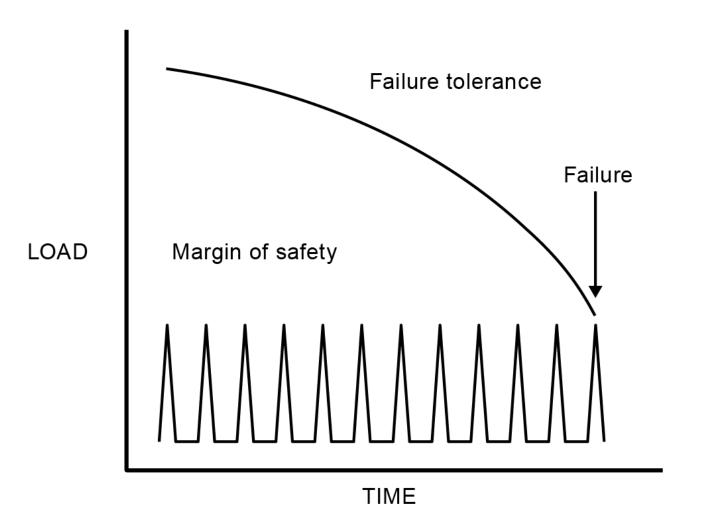
- Understand effects of fatigue how it contributes to soft tissue failure and injury
- Understand the effects of heavy single loads and failure
- Can occur in workstations that are designed correctly under ergonomics guidelines if process is not evaluated correctly

EFFECTS OF FATIGUE

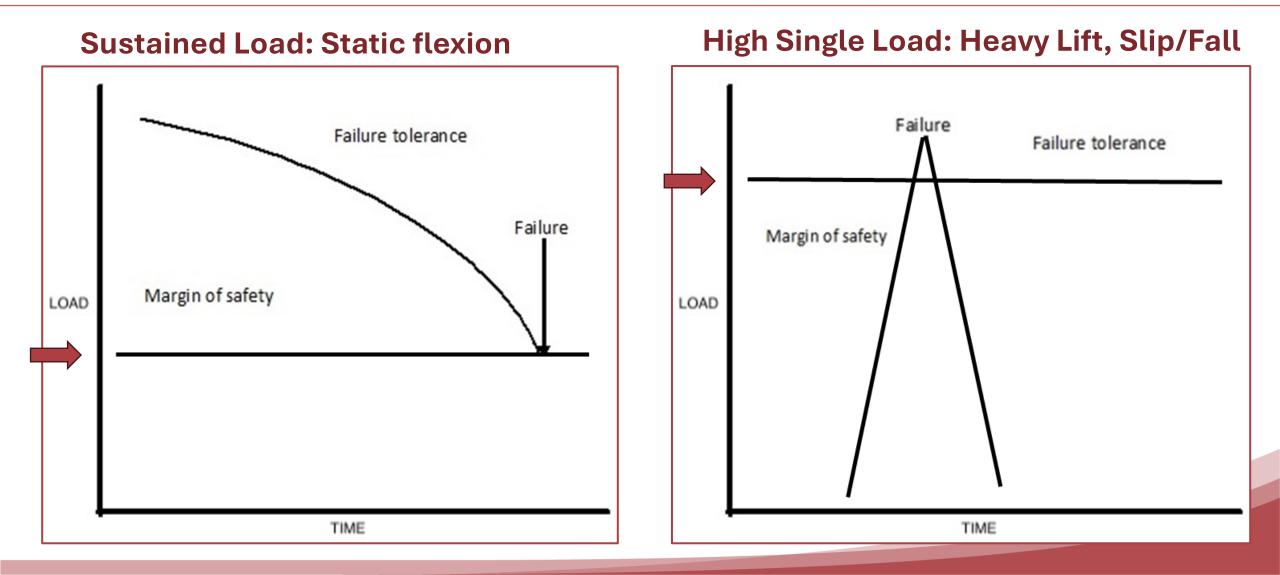

Muscle Fatigue \implies Bundle Failure \implies Fibrile Disruption \implies

Inflammation — Impairment — Injury

INFLAMMATION CYCLE



Microtearing of Motor Units

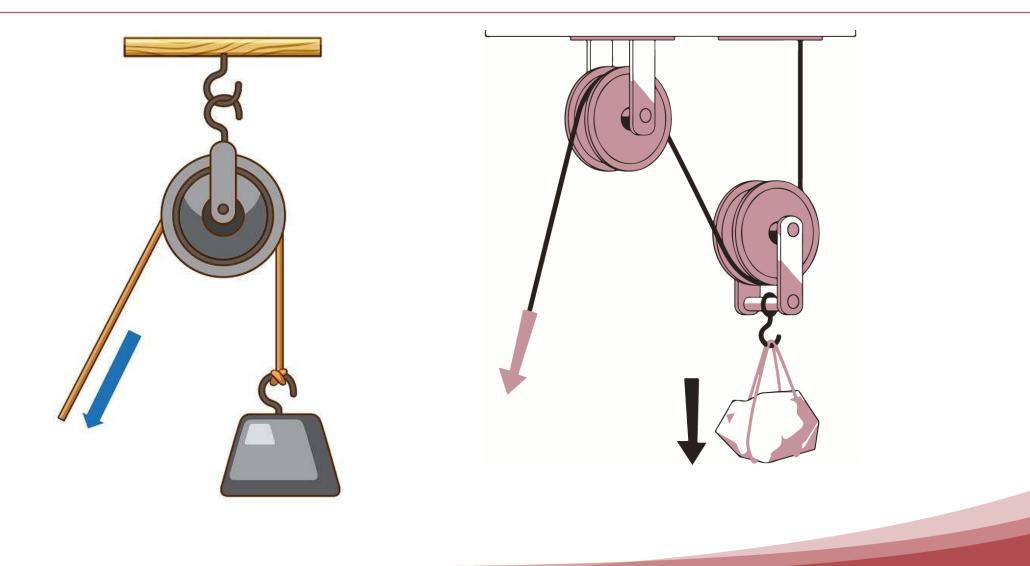


PROCESS

Understanding the big picture

WHY?

- Develop contingency plans for process failures
- Prioritize issues



- What is "awkward posture"?
- Why do we focus on posture/joint position?
- What to look for

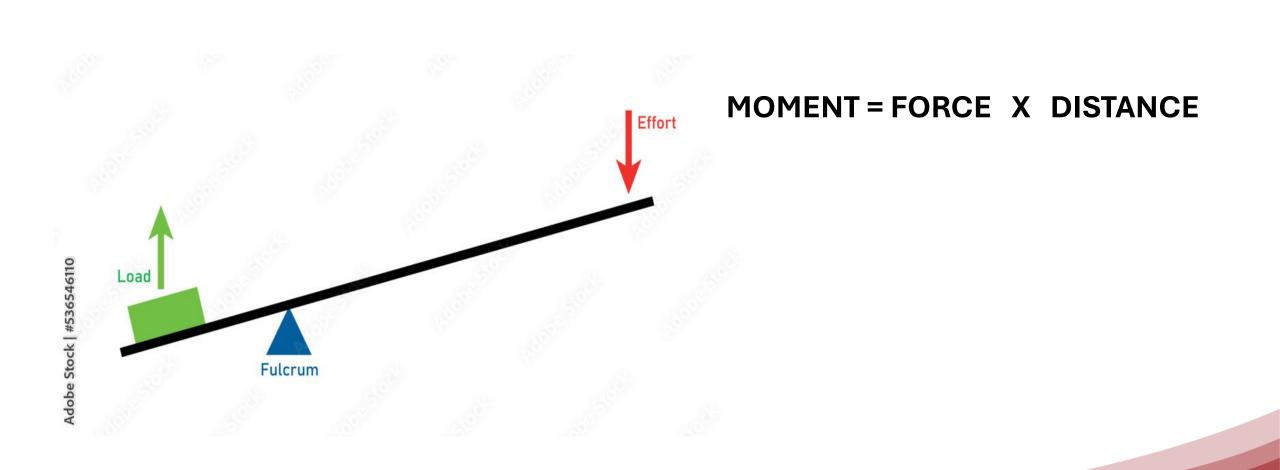
EFFECTS OF PULLEYS

EFFECTS OF PULLEYS

LOAD: weight of object (Ham / Beef Round etc)

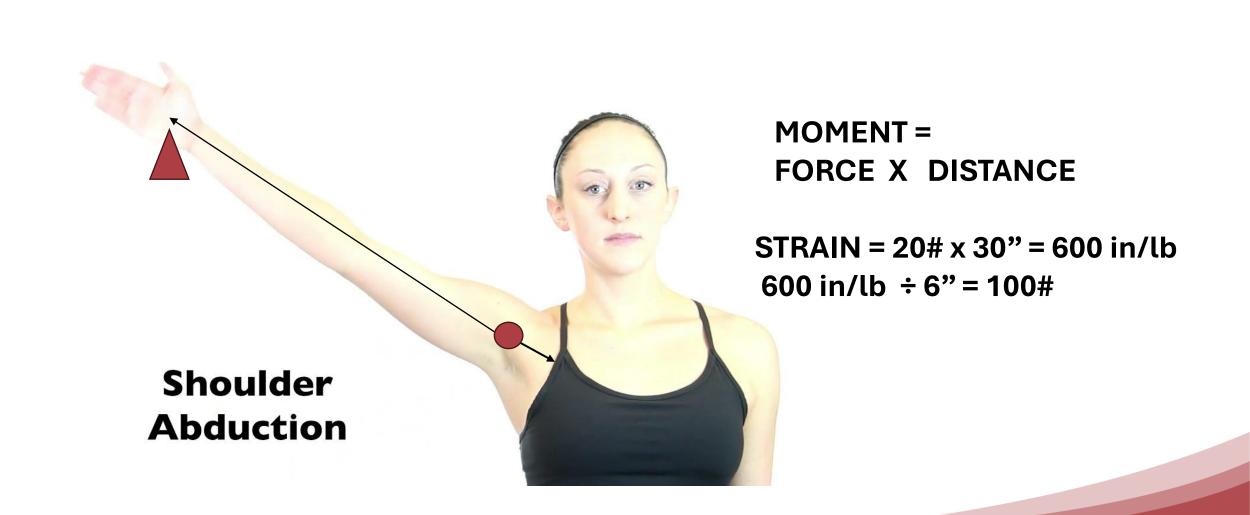
EFFORT: amount of force needed to lift or move the object

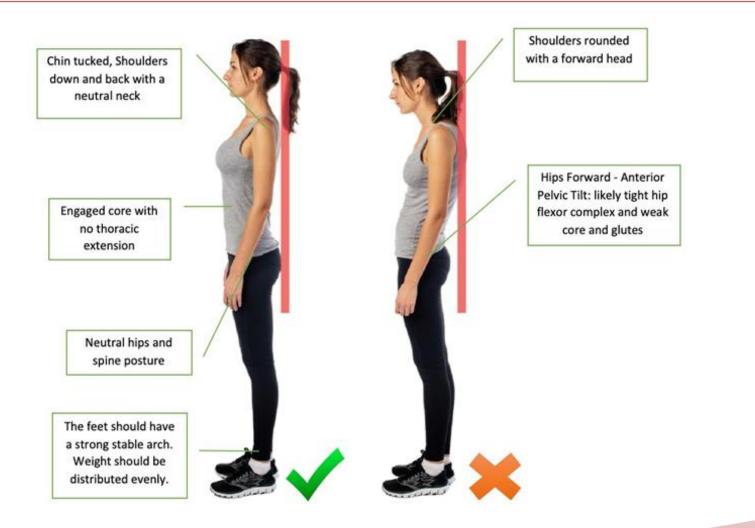
MECHANICAL ADVANTAGE: The factor by which a machine reduces effort (force) alteration when using an external device.

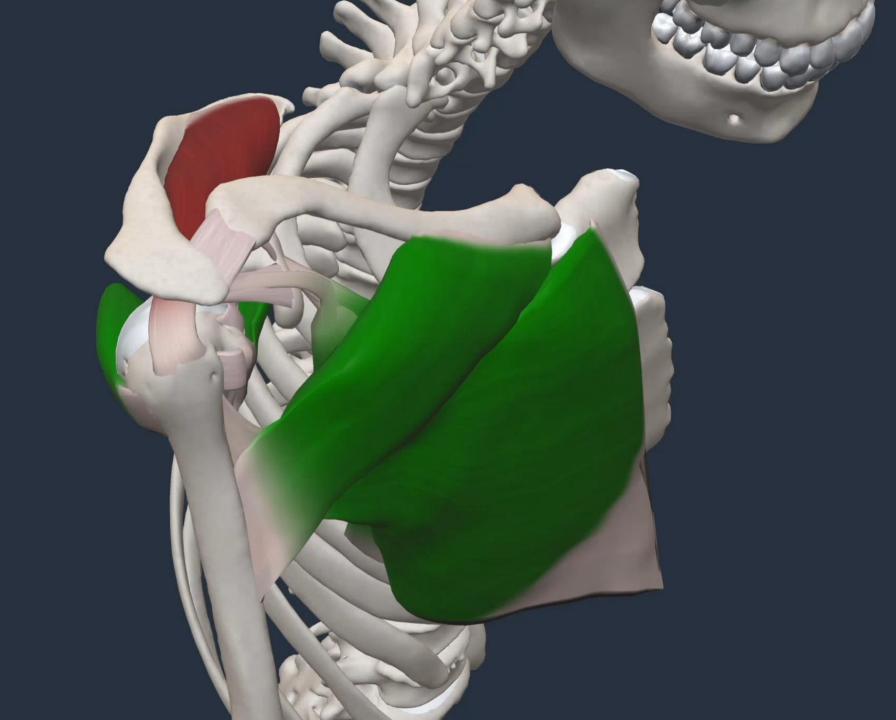

- 1 PULLEY = Mechanical advantage of 2 (40#/2 = 20#)
- 2 PULLEY = Mechanical advantage of 3 (40#/3 = 13#)
- 3 PULLEY = mechanical advantage of 4 (40#/4 = 10#)

The more pulleys, the easier the EFFORT

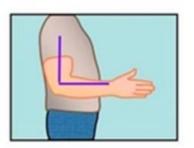
HOWEVER, the human body is not designed with effective pulleys and therefore has poor mechanical advantage at most joints.


EFFECTS OF LEVERS

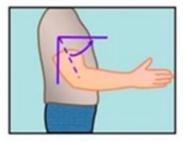

EFFECTS OF LEVERS



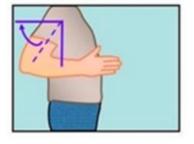
POSTURE



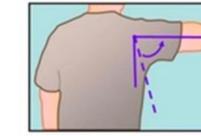
POSTURE



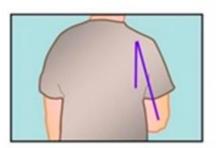
Neutral Posture

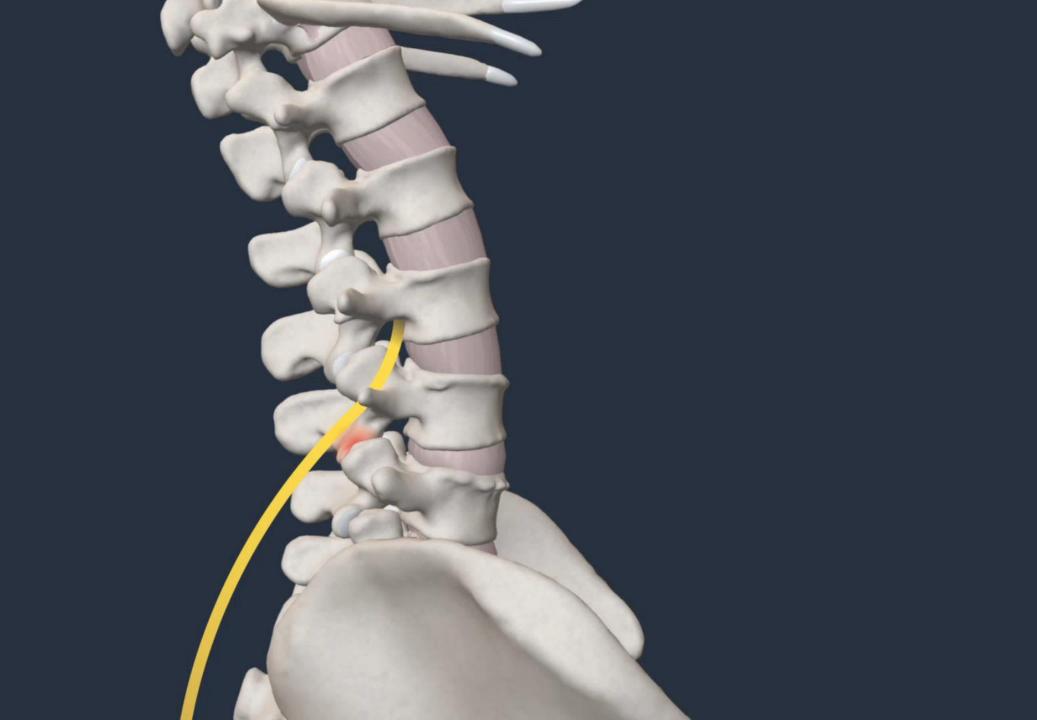


Awkward Postures

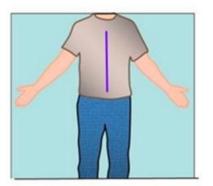

Shoulder Flexion

Shoulder Extension

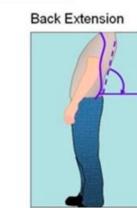


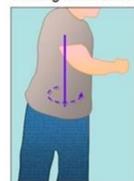

Shoulder Abduction

Shoulder Abduction & Extension

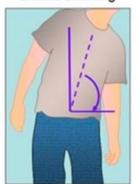


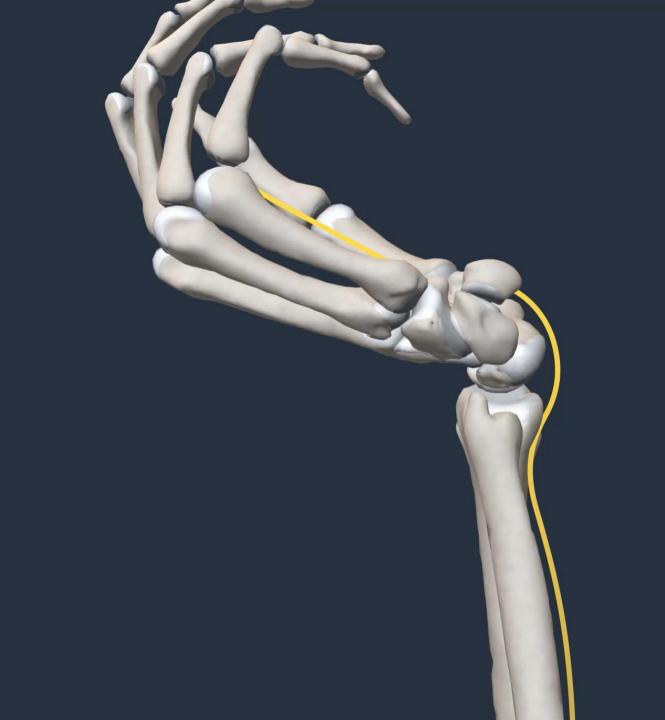
Posture


Neutral Posture



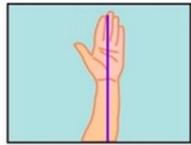
Awkward Postures



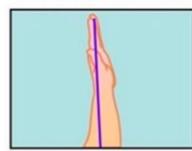


Twisting about Waist

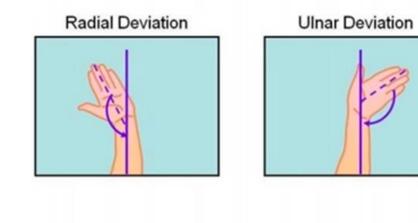
Lateral Bending

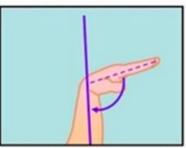


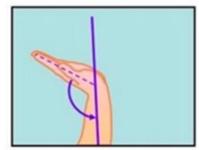
POSTURE



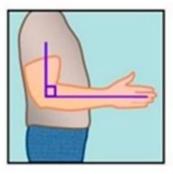
Neutral Posture

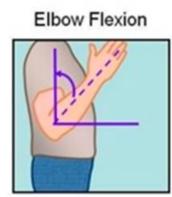

View#1 (minimal radial/ulnar deviation)

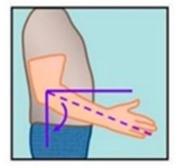

View#2 (minimal flexion/extension)


Awkward Postures

Flexion

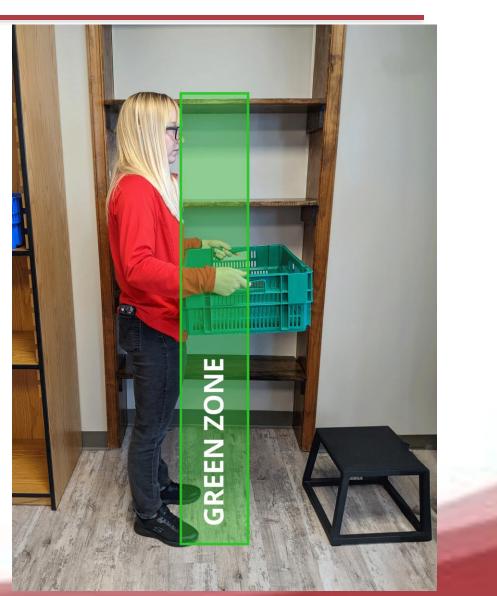

Extension




Neutral Posture

Awkward Postures

- Guidelines
 - Power zone
- Anthropometrics and adapting your demographic


Power Zones

40-Pound box

Strain on Low Back from the weight of the load:

- 40 [lbs] x 6 [in] = 240 [in-lbs] + 960 [in-lbs] upper body = 1,200 [in-lbs] or 400-600 POUNDS
- 40 # @ 18" = **560-840 POUNDS**
- 40 # @ 24" = **640-960 POUNDS**

40# box in Green zone vs Red Zone = 560 pounds

Understanding a workstation

- Demographics/Anthropometrics
- Hand-working height, not table height
- Adjustability
- Space to move
- Reach

- Age
- Gender
- Hand Dominance
- Health and Wellness

EQUIPMENT

EQUIPMENT

• Fit

- Application
- Maintenance

- Tools for handling
- "Proper" lifting mechanics
- Box Weight/Size guidelines

Scissor lift or load table

Hand cart/product rack design

The Squat – is it practical in most environments?

- **No.** Based on simple and impractical mechanics not designed for lifting in repetitive industrial settings
- Freestyle lifting mechanics and reduced physiological tax

Box design

- Dimensions
- Weight
- Coupling
- Pallet Size

• Training program guidelines

• Work Hardening Programs

"Practice doesn't make perfect...

Perfect practice makes perfect."

Training program recommendation

- Controlled environment limiting paced work
- Technique driven and evaluated vs pace
- Documentation
- Trained trainers vs. experienced employees

Work Hardening

Practice best job method

- SOP's
- Proper guidelines and documentation of process
- Review SOP's and expectations with trainee and do it consistently
- Use operations and safety resources available to review identified
- hazards of the workplace

TRAINING

Weeks 1-4

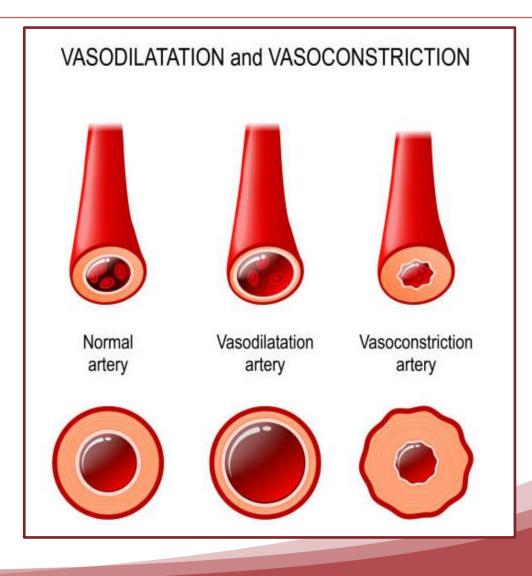
• Work limited to 40 hours/week

Weeks 5-6

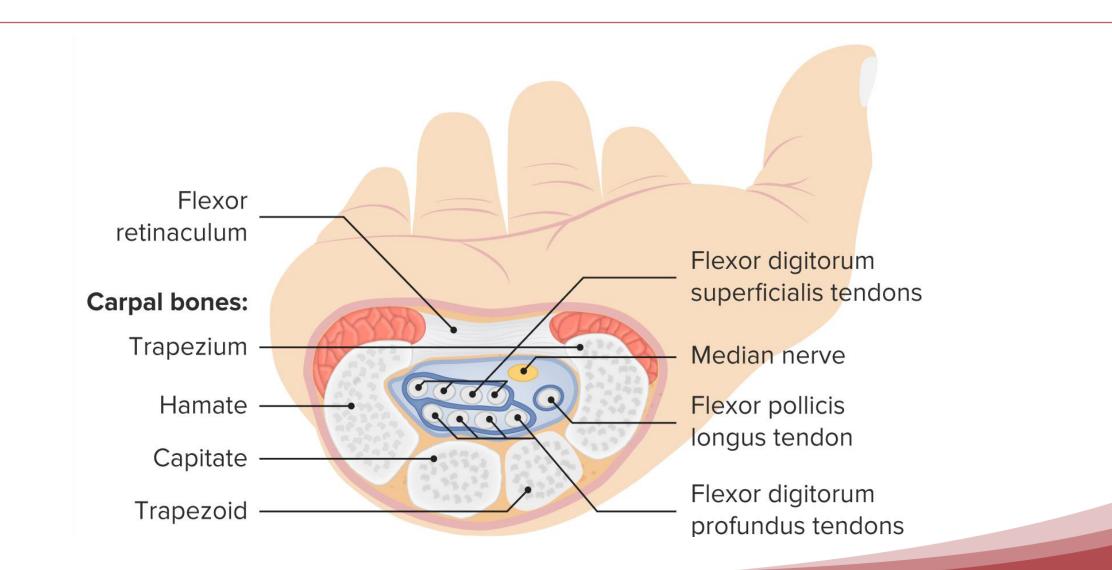
• Work limited to 5 days/week

Weeks 7+

- Work all regular department hours and days
- Continue to monitor through touchpoints


ENVIRONMENT

- Cold
- Wet
- Circulating airflow (convection)


Blood vessels constrict and chemical changes occur in the muscles.

Sensation, proprioception, and motor function in hands diminishes

ENVIRONMENT

ENVIRONMENT

- Proper glove wear
 - Wool, polyester, nylon
 - Avoid cotton gloves
 - Ineffective insulator
 - Absorbs moisture and becomes counterproductive immediately

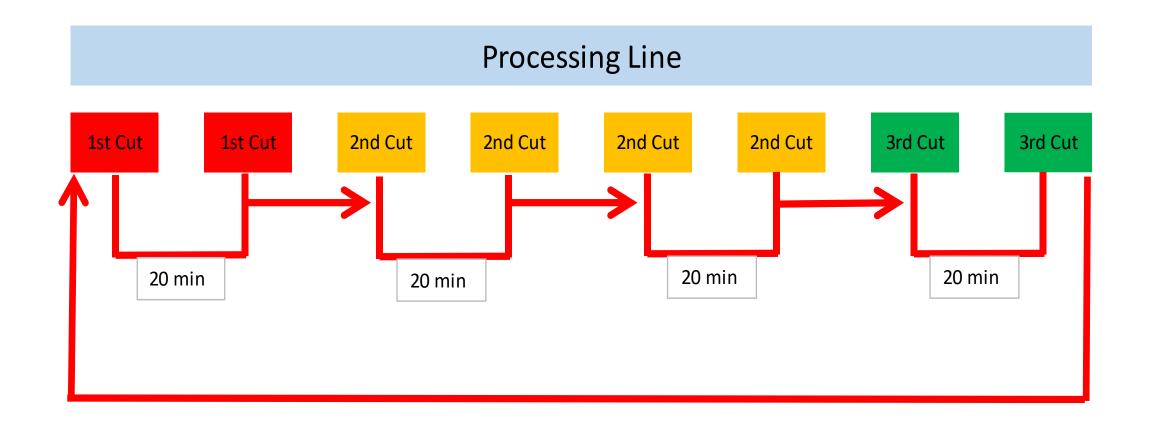
• Layers

 Inspect layers - ensure workers are not wearing additional gloves that further restrict blood flow and limit motion

• Controls - establish work practices that reduce duration, frequency, or intensity of exposure to hazards

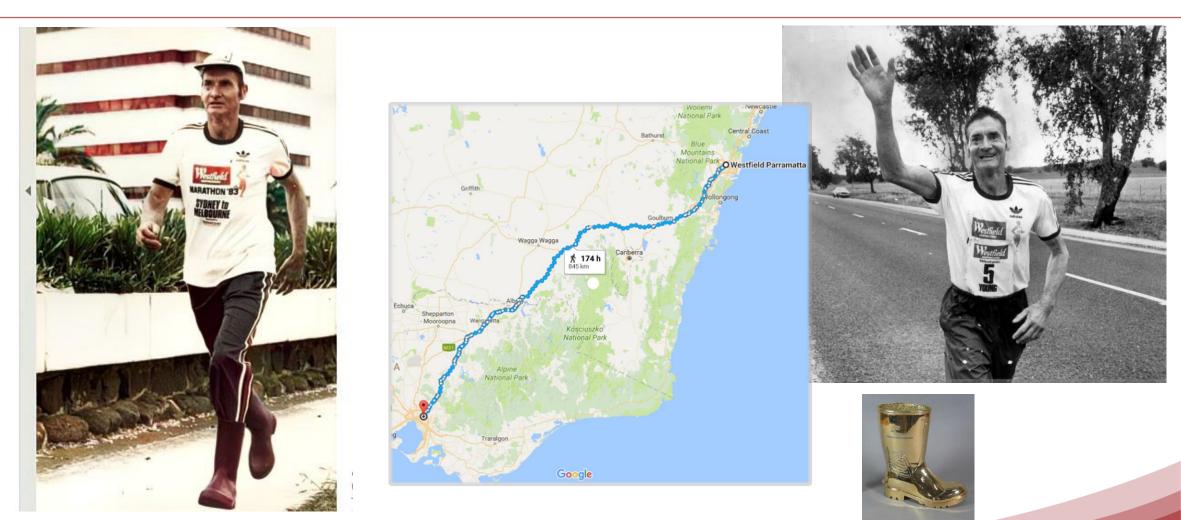
- Job rotation
- Breaks
- Stretching programs

Rotations

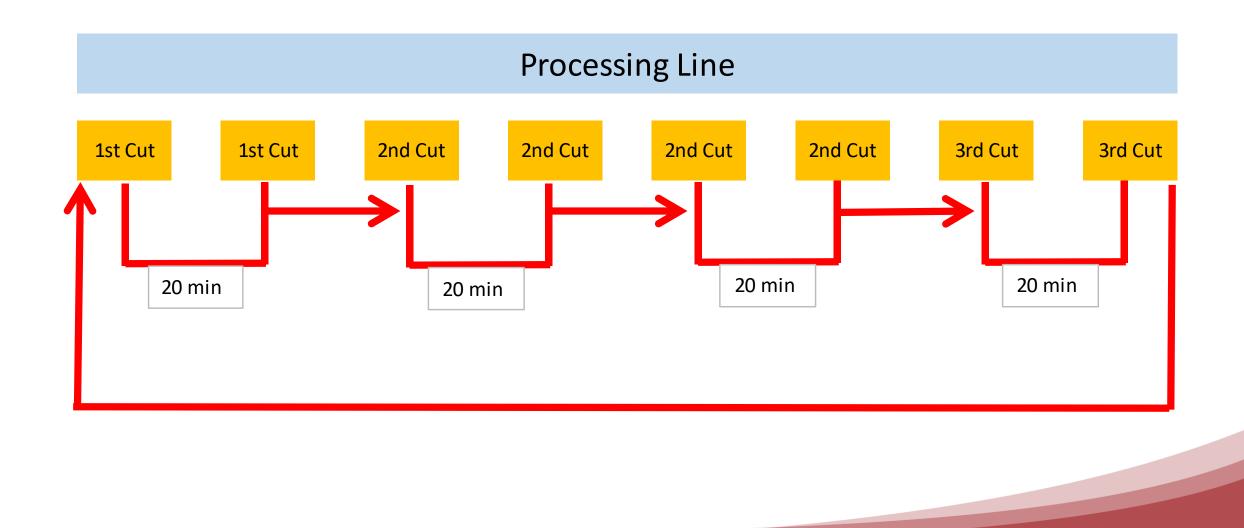

- Balancing risk
- Breaking monotony of positions
- Cross-training

Effective?

- 30 minute to 1 hour rotation
- Limit repeated body part exposure
- Job training
- Job enlargement



CONSERVING ENERGY



How a Potato Farmer won a 544 mile Marathon at age 61

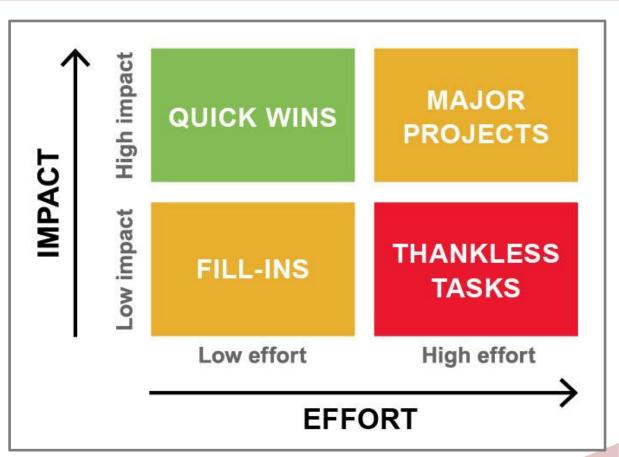
Cliff Young

ERGONOMIC APPROACH

Employee Feedback

Feedback from people performing the job

- Utilize your most important asset
- Create a platform to allow employees to be involved in ergonomics programs
- Surveys


REACTIVE VS PROACTIVE APPROACH

Ergonomics programs start in the *reactive*

- Review OSHA log for high injury/Illness rates
- Prioritize areas for assessment and intervention
- Tackle the low cost/high impact solutions
 - "Low hanging fruit"

Sustain the program, but how?

Modify your approach to be *Proactive*

LOOK BELOW THE SURFACE

Recordable	^
First Aid	
Discomfort	
Near Misses	
Employee Feedback	

- **REBA** Rapid Entire Body Assessment
- **RULA** Rapid Upper Limbs Assessment
- Strain Index
- **NIOSH** lifting equations
- Liberty Mutual Material Handling Equations

REBA

Rapid Entire Body Assessment

REBA

Rapid Entire Body Assessment

Used to "rapidly" evaluate the risk of developing MSDs associated with certain job tasks

Pros

- Simple postural analysis
- Divides body into segments with reference to postures and movement planes
- Provides a scoring system for static, dynamic, rapid changing, and unstable postures
- Considers coupling with handling loads
- Simple; user friendly

Cons

- Does not consider duration, recovery time, or hand/arm vibration
- Only evaluates are worst case posture

Tools

- Goniometer
- Camera; photos and videos

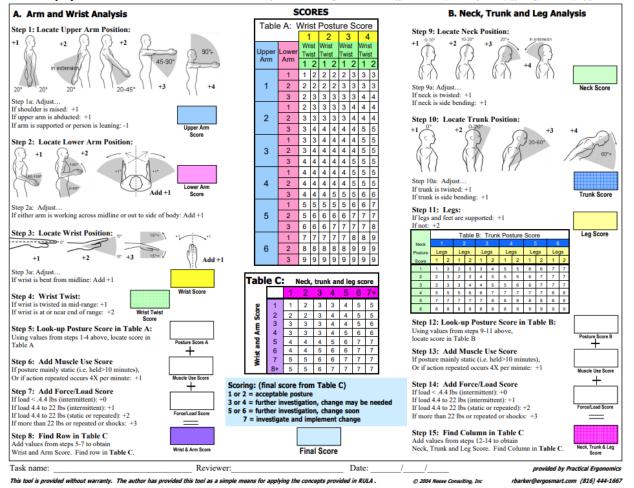
REBA

Rapid Entire Body Assessment

Looks at

- Neck, Trunk, Legs
 - Neck position
 - Trunk position
 - Leg position
 - Force/Load score
- Arm and Wrist
 - Upper arm position
 - Lower arm position
 - Wrist position
 - Coupling score
 - Activity score

This assessment is good for


- Any job that uses the entire body
- Packers/Palletizers
- PIT OPs
- Warehouse Ops
- In conjunction with a lifting assessment like NIOSH

RULA

Rapid Upper Limb Assessment

RULA Employee Assessment Worksheet based on RULA: a survey method for the investigation of work-related upper limb disorders, MAtamney & Corlett, Applied Ergonomics 1993, 24(2), 91-99

RULA

Industry Health Solutions

Rapid Upper Limb Assessment

Used to "rapidly" evaluate the exposure of an individual worker, for risk of developing upper limb MSD

Pros

- Provides a method of screening to assess exposure to risk factors leading to upper extremity "illnesses"
- Evaluates factors that contribute to muscle fatigue (postures, excessive forces, static or repetitive, etc.)
- Simple end score and user friendly

Cons

• Duration, available recovery time, and hand/arm vibration not considered

Tools

- Goniometer
- Camera (photos and videos)

RULA

Rapid Upper Limb Assessment

Looks at

- Arm and Wrist
 - Upper arm position
 - Lower arm
 - Wrist
 - Muscle score (static or repetitive)
 - Force/load
- Neck, Trunk, Legs
 - Neck position
 - Trunk position
 - Legs supported
 - Muscle score
 - Force/load

This assessment is good for

- Hand intensive/repetitive tasks
- Anyone that uses scissors/knives
- Assemblers
- Packers
- In conjunction with RULA

Strain Index

Moore-Garg

APPENDIX A - A USER'S GUIDE FOR THE STRAIN INDEX

This guide describes how to perform the five steps associated with using the Strain Index. Page 1 describes the rating criteria and the measurements and calculations for the six task variables. The numerical ranges for assigning rating criteria for the subjective variables are only guidelines. Page 2 includes a table for entering your data and guides you through calculating an SI score.

Step 1: Data Collection

1. Intensity of Exertion is an estimate of the strength required to perform the task one time. Guidelines for assigning a rating criterion are presented in the following table. Write the most appropriate rating criterion into the data table.

Rating Criterion	%MS ¹	Borg Scale [*]	Perceived Effort
Light	<10%	_2	Barely noticeable or relaxed effort
Somewhat Hard	10%-29%	2	Noticeable or definite effort
Hard	30%-49%	4-5	Obvious effort; unchanged facial expression
Very Hard	50%-79%	6-7	Substantial effort; changes facial expression
Near Maximal	<u>≥</u> 80%	>7	Uses shoulder or trunk to generate force

A Percentage of maximal strength

^BCompared to the Borg CR-10 scale⁽⁷⁶⁾

2. Duration of Exertion is calculated by measuring the duration of all exertions during an observation period, then dividing the measured duration of exertion by the total observation time and multiplying by 100.

% Duration of Exertion = 100 X <u>duration of all exertions (sec)</u> = 100 X _____ = ____

3. Efforts per Minute are measured by counting the numbers of exertions that occur during an observation period, then dividing the number of exertions by the duration of the observation period, measured in minutes.

Efforts per Minute =	number of exertions	_	
Enorts per Minute -	total observation time (min)	_	

4. Hand/Wrist Posture is an estimate of the position of the hand or wrist relative to neutral position. Guidelines for assigning a rating criterion are presented in the following table. Enter the results in the data table.

Rating Criterion	Wrist Extension ⁴	Wrist Flexion ^A	Ulnar Deviation ^A	Perceived Posture
Very Good	0° - 10°	0° - 5°	0° - 10°	Perfectly neutral
Good	11° - 25°	6° - 15°	11 - 15°	Near neutral
Fair	26° - 40°	16° - 30°	16° - 20°	Nonneutral
Bad	41° - 55°	31° - 50°	21° - 25°	Marked deviation
Very Bad	>60°	>50°	>25°	Near extreme

A Derived from data presented in Stetson et al. (20)

5. Speed of work is an estimate of how fast the worker is working. Guidelines for assigning a rating criterion are presented in the following table Enter the result in the data table.

Rating Criterion	Compared to MTM-1 ^A	Perceived Speed
Very Good	$\leq 80\%$	Extremely relaxed pace
Good	81 - 90%	"taking one's own time"
Fair	91-100%	"normal" speed of motion
Bad	101-115%	Rushed, but able to keep up
Very Bad	> 115%	Rushed and barely or unable to keep up

A The observed pace is divided by MTM-1's predicted pace and expressed as a percentage of predicted. See Barnes.⁽⁸⁵⁾

6. Duration of Task per Day is either measured or obtained from plant personnel. Enter the result in the data table.

Step 2: Assign Ratings Values

Use the table below to find the rating values for each task variable. Select the appropriate entry for each variable, then find the corresponding rating value on the same row at the far left.

	Intensity of	Duration of	Efforts/	Hand/Wrist	Speed of	
Rating Values	Exertion	Exertion	Minute	Posture	Work	Duration per Day
1	Light	<10	<4	Very good	Very slow	≤1
2	Somewhat hard	10 - 29	4 - 8	Good	Slow	1 - 2
3	Hard	30 - 49	9-14	Fair	Fair	2 - 4
4	Very hard	50 - 79	15 - 19	Bad	Fast	4 - 8
5	Near maximal	≥ 80	≥20	Very bad	Very fast	≥ 8

Step 3: Determine the Multipliers

Rating Values	Intensity of Exertion	Duration of Exertion	Efforts/ Minute	Hand/Wrist Posture	Speed of Word	Duration per Day
1	1	0.5	0.5	1.0	1.0	0.25
2	3	1.0	1.0	1.0	1.0	0.50
3	6	1.5	1.5	1.5	1.0	0.75
4	9	2.0	2.0	2.0	1.5	1.00
5	13	3.0 ^A	3.0 ^A	3.0	2.0	1.50

A If duration of exertion is 100%, then efforts/minute multiplier should be set to 3.0

Enter vour data here:

	Duration of Exertion	Hand/Wrist Posture	Duration per Dav

Step 1: Rating Criterion or

Step 2

Measured Result

Step 2:		
Rating	Value	

Step 3:

Multiplier

Step 4: Calculate Score

Intensity of Exertion	x	Duration of Exertion	x	Efforts per Minute	x	Hand/ Wrist Posture	x	Speed of Work	x	Duration of Task	=	SI Score	
	х		х		х		х		х		=		

Step 5: Interpret the Result

Preliminary testing has revealed that jobs associated with distal upper extremity disorders had SI Scores greater than 5. SI Scores less than or equal to 3 are probable safe. SI Scores greater than or equal to 7 are probably hazardous. The Strain Index does not consider stresses related to localized mechanical compression. The risk factor should be considered separately.

Strain Index

Moore-Garg

Used to evaluate hand intensive and repetitive tasks for the risk of developing hand/wrist/elbow MSDs

Pros

- More in depth than the RULA
- Better prediction accuracy for developing MSDs
- Considers duration, recovery time, and speed

Cons

- Time consuming
- Does not evaluate hand/wrist vibration

Tools

- Stopwatch
- Counter
- Camera (videos)

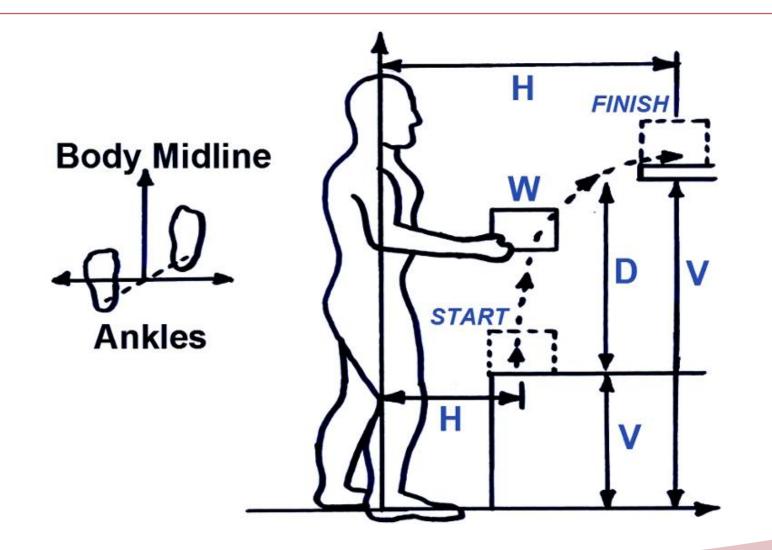
Strain Index

Moore-Garg

Looks at

- Intensity of work
- Duration of exertion
- Efforts per minute
- Hand/Wrist posture
- Speed of work
- Duration of task

This assessment is good for


- Hand intensive/repetitive tasks
- Anyone that uses scissors/knives
- Assemblers
- Packers
- In conjunction with RULA

NIOSH Lifting Equation

National Institute for Occupational Safety & Health Lifting Equation

NIOSH Lifting Equation

National Institute for Occupational Safety & Health Lifting Equation

Created to determine whether a lift can be performed safely over the duration of a workday without causing a lower back injury for the average employee.

Pros

- Equation that calculates the Risk Index for two handed lifts at the origin and destination of the lift
- Provides a recommended weight of the object being moved within the parameters of the lift being performed
- Factors in other variables other than weight that can contribute to injury and illnesses

Cons

- Cannot be used in one handed lift scenarios or lifts that occur longer than 8 hours
- Cannot adjust for lifts that are carried beyond a few steps
- Unable to factor in unstable loads
- Does not factor in control of object being moved ex. Box is thrown onto pallet and not gently placed would not provide accurate assessment

Avoid testing destination if significant control of the object is not required.

NIOSH Lifting Equation

National Institute for Occupational Safety & Health Lifting Equation

Looks at

- Horizontal location
- Vertical Location
- Vertical Travel Distance
- Asymmetry angle
- Lifting Frequency
- Quality of handles
- Weight of load
- Duration of lift

This assessment is good for

- Palletizers
- Anyone that performs a two-handed lift or lower.

Tools

- Goniometer
- Measuring tape
- Stopwatch
- Counter
- Camera (photos and videos)

Liberty Mutual Manual Material Handling Equations

Liberty Mutual Manual Materials Handling Guidelines

TABLE 11M - MALE POPULATION PERCENTAGES FOR CARRYING TASKS

		EYING ANCE		1	- 11	-			-						1.1	1 PER	τ.	
		UENCY		1.1			1			12.5			-				1.1	-
ON	CAR	RYEW		154	-	14	941		194	10.6	140	-	*	150	30.4	be.	-	
	10	1	-45	1.1		1	18	10	1.1		10	1		2			1	
	_		23	-	11	11		47	-		71	- 21	54		-	5.	-15	-
	36		-41	125	1991	10	н	1.74	1.0		4	4	48	135		5	1	
	100		- 85	-	18	20	-42	- 21	- 4		-16	1200	-	1.1		- 94	34	
			48	1.00	-	11	-28	10	1.1		10	17	41	1.1	-	- 42	1.41	
	-		35	14	10	28	- 61	n		1.1	1	34	46	1	18	18	34	_
			41-	19.0	-	N.	. 10.		1.4	14	91	24	- 94	10	- 4	1	+	
	1.		- 828 -	19	18.	-45	- 34	28	-	-	38	- 20	10	1.46	18	37	-11	
() III ()	41	141	14	11	41	78.	1.0	-4	19	27	-84	1.1	-	+	14			
5		0	11	71	31	- 66	- 84	81		18	11	41	· ni	19	38	28	36	
ä	11	i i i i i i i i i i i i i i i i i i i	41	116	1.64	10	47	1.14	1.40	1.00	38	24	- 44	100	1	-	- 18	
Ξ.		1.5	325	28	1.88	32	1.84	1.84	-	111		11.	11	16	- 38	- 28 -	. 46	
õ	15	(INCHES	- 162	- 14	. 28	46	81	78	1	14	18	26	-	1.4	13	14	25	
٩.		3	35	. 64		18		148	11	28		82		21	317	38	10	
t:		E	45	24	14	46		. 81	1.41	- 18	34		18	140	16	16	35	
â.	3.1.5	표	.85	42	100	- 64	14	- 18	10	25	11	40	41	22	.44	45	11	
Ē.	10	HEIGHT	- 43	11	10	80	-	94		78	80	11	18	1.4		28	36	
≥	2.1	<u>۳</u>	10	- 40	tr.	44	18	+	22	.11	10	18		34	. 10	14	81.	
5	11		48		47	40	11	81	10		er.	- 84	-12	10	- 10	36	-46	
ŭ.	1.00	HAND	22	- 67	44	N	- 82	4	20		- 14	14	. 60	- 41	10	104.1	- 16	
OBJECT WEIGHT (POUNDS)	87	2	83	47	16	87	11	14	18	34		87		17	41	42	14	
ō		T		44	10	16	10	+	. it	. 92	.19	.10				-	14	
	88.		-65	14	- 44	. 13	- 84	- 44	-27	41	82	71	- 16	10	- 10	81	- 42	
	- 11		11	78	18	84			-44	40		. 81	+	- 14	11	11		
			83	84	10	.78	**	+	- 37	12	10	18	+	*1	38	28		
			10	14		14	+	+		- 14		- 86	+	**	11	76		
	48		45	. Pt	10	81	.86	+	41.	. 81	16	81	14	: 29	87	- 18	.78	
	23		10				4	+	0.0	18	16			1.79		42		
	41		85	19	12	**	+	+	18	12	82	87	+	#1	14	25	12	
						÷.		+	12	**	**							
			- 81	15	10	-		+	14	198	-			11		89.	11	
	-		85	140	1.60			+	- 90	- 10	-		-	-	14		-	
	24		45			+		+		47			+	-84	-			
								+						1.2				
	-		-44						1					14.1-				
_	1.1	-	-	-		Canet A	-	NAN S	-		1870	THAT	1.107			_	_	-

Created to determine acceptable loads and forces in lifting, lowering, pushing, pulling, and carrying tasks to prevent injuries. Liberty mutual has more than 40 years of psychophysical research on the tasks mentioned above.

Pros

- Has a lot of great research to back up the results
- Uses predictive equations to allow for more specific inputs for more accurate results
- Designed to prevent injuries not only in the lower back but the entire body
- Easier and more comprehensive than the older liberty mutual tables

Cons

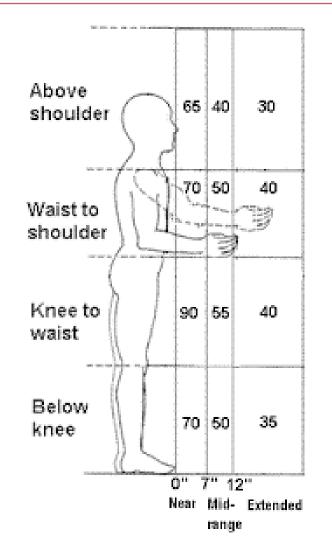
- Designed for tasks performed during an 8-hour day in favorable ambient temperatures
- Limited to conditions and independent variables of the test subjects in the studies
- Lifting and lowering tasks need to be controlled and 2-handed tasks

Looks at

- Lifting
- Lowering
- Carrying
- Pushing
 - Initial
 - Sustained
- Pulling
 - Initial
 - Sustained

This assessment is good for

- Palletizers
- Warehouse
- Any job that requires 2-hand manual handling of product
- Development of jobs/products


Tools

- Goniometer
- Measuring tape
- Stopwatch
- Counter
- Camera (photos and videos)
- Dynamometer

WISHA Lifting Calculator

Washington State Department of Labor and Industries Lifting Calculator

WISHA Lifting Calculator

Washington State Department of Labor and Industries Lifting Calculator

Created to be a quick screen on manual lifting tasks to determine if further analysis are needed. This is very similar to the NIOSH calculator with a few measurements removed to make for faster screenings. This calculator is not designed to be a final analysis to determine if a lifting task is unsafe. Considered to be a very liberal test compared to other lifting calculators.

Pros

- Fast and easy with few tools and measurements needed
- Provides a baseline on what lifting tasks may need further testing
- Designed to make sure lifts are safe for all individuals

Cons

 Does not consider many variables during the lifting task

SUMMARY

- Ergonomics
 - Process
 - Posture
 - Workstation
 - Material Handling
 - Training
 - Environment
 - Administrative Controls
- Consider the Science
- Reactive vs Proactive Ergonomics Approach
- Ergonomic Instruments and Application
- Prioritization