Beef Safety- Salmonella Outbreaks and Risk Assessment

Ali Strickland, Fernando Sampedro, Craig Hedberg UMN School of Public Health

> MINNESOTA INTEGRATED FOOD SAFETY CENTER OF EXCELLENCE

> UNIVERSITY OF MINNESOTA . MINNESOTA DEPARTMENT OF HEALTH

CDC. National *Salmonella* Surveillance Overview. Atlanta, Georgia: US Department of Health and Human Services, CDC, 2011.

Salmonella Outbreaks and Risk Assessments

- Overview of public health surveillance
 - Transformative effect of whole genome sequencing
- Importance for source attribution and risk assessments
- Impact for industry

https://wwwn.cdc.gov/norsdashboard/

Salmonella Outbreaks Associated with Ground Beef, US, 2009-2021

https://wwwn.cdc.gov/norsdashboard/

Primary Sources for Outbreak Detection

Salmonella infections by year; 1996-2021

Incidence per 100,000 population – FoodNet sites; all test methods * Culture-confirmed includes those infections confirmed by culture only or by culture following a positive CIDT.

Source: FoodNet, Centers for Disease Control and Prevention

https://www.cdc.gov/foodnet

Whole genome sequencing improves the detection and investigation of foodborne outbreaks

Before using whole genome sequencing (WGS) (Sept 2012-Aug 2013)

Year 1 of WGS (Sept 2013-Aug 2014)

Year 2 of WGS (Sept 2014-Aug 2015)

Increasing the specificity of food exposure information provided by casepatients is as important as increasing the specificity of the case definition.

Team Diarrhea

The National Molecular Subtyping Network for Foodborne Disease Surveillance

Julse Vetus 17 au 18 he National Molecular Subtyping Ne r Foodborne Disease Surv WASHINGTON NORTH DAKOTA OREGON Philadelphia IDAHO City SOUTH DAKOTA IOW/ NEVADA NEBRASKA CO ILLINOIS ()City CALIFORNIA KANSAS Los Angeles KENTUCKY County OKLAHOMA San Diego County National Pattern NEW MEXICO ARKANSA CDC CDC Database TEXAS Area Laboratories (7) 00 State Laboratories (50) City of Houston County/ City Laboratories(5) 😥 USDA-FSIS Laboratory 🛛 兽 FDA-CFSAN Laboratory 🔶 FDA-CVM Laboratory 🔘 FDA-ORA Laboratory FoodNet Participant

Salmonella Outbreak Linked to Ground Beef

August 2002

Salmonella Outbreak Linked to Ground Beef

- 16 ill
- Age 0 to 97 years, 19% under 5 years
- 56% female
- 14 interviewed, 9 (64%) ate ground beef, all named same grocery store chain.
- Routine FSIS ground beef surveillance sample in March 2023 was closely related to bacteria from sick people's samples.

https://www.cdc.gov/salmonella/i45-10-21

Salmonella Attribution to Food Categories, 2020

https://www.cdc.gov/foodsafety/ifsac/pdf/P19-2020-report-TriAgency-508.pdf

Salmonella Attribution to Food Categories, 2020

https://www.cdc.gov/foodsafety/ifsac/pdf/P19-2020-report-TriAgency-508.pdf

Risk Assessment Models

FSIS Raw Product Sampling and Testing

- 52 week "moving window" testing approach
- Frequency dependent upon daily production volume
- Increased NTS prevalence in ground products
- HACCP Plans

USDA FSIS Quarterly Sampling Reports on Salmonella. Q1, 2023

Product	Number of Samples	Number of Positives	Percent Positive
Young Chicken Carcasses	2442	117	4.79%
Chicken Parts (legs/breast/wings)	3698	306	8.27%
Comminuted Chicken	471	127	26.96 %
Mechanically Separated Chicken	30	26	86.67%
Total for Raw Chicken	6663	580	8.70%
Young Turkey Carcasses	412	0	0.00%
Comminuted Turkey	301	50	16.61%
Mechanically Separated turkey	22	12	54.55%
Total for Raw Turkey	735	62	8.44%
Raw ground beef - Retail	126	5	3.97%
Raw ground beef	2617	28	1.07%
Total for Raw Beef	4302	76	1.77%
Comminuted pork	1545	246	15.92%
Pork Cuts	576	41	7.12%
Total for Raw Pork	2121	287	13.53%

https://www.fsis.usda.gov/science-data/data-sets-

visualizations/microbiology/microbiological-testing-program-rte-meat-and-7

Prevalence: 3/8 = 37.5%

Prevalence: 1/6 = 16.7%

Prevalence: 1/6 = 16.7%

Ground Beef Risk Assessment

- Estimate annual reductions in *Salmonella* infections when highly contaminated ground beef lots were diverted from consumption.
- Estimate contribution of high and low-virulent and multi-drug resistant (MDR) serotypes on the total number of illnesses and burden of disease.
- Prioritize risk-based pathogen mitigation strategies.

FSIS Enumeration Data

1060 Salmonella enumerated samples (2010-2020)

- *Salmonella* prevalence in models varied from 1.43 1.47%
- 13.7% met high virulence criteria
- 15.9% MDR

Very low Salmonella prevalence in production lots sampled

- >1 MPN/g = 2.4% production lots
- >10 MPN/g = 0.4% production lots

Average concentration = 0.017 MPN/g (4.07 MPN/g)

Risk Assessment Process - Ground Beef

Initial prevalence & concentration

Handling, cooking, and consumption practices

Ingested dose and dose-response

Effect of removing highly contaminated lots

Baseline

Effect of removing highly virulent serotypes

Effect of removing drug resistant serotypes

High Virulence Criteria

• Listed as a top 10 serotype isolated from human illnesses according to the most recent CDC *Salmonella* Annual Report

<mark>OR</mark>

 Identified as an outbreak causing serotype by the National Outbreak Reporting System

<mark>AND</mark>

 Was not individually over-represented in risk estimates using CDC and FoodNET serotype reporting data

Consumption Scenarios and Proportion of High- and Low-Virulence Serotypes

NIVERSITY OF MINNESOTA

High Virulence NTS Salmonella Dose-Response

Source data: World Health Organization, Food and Agriculture Organization of the United Nations, 2002

Results

Table 1. Risk estimate comparisons after removal of lots based on relativeSalmonella characteristics

Model	Annual Illnesses*	Reduction from Baseline (%)
Baseline	8,980	-
>10 MPN/g removed	7,759	13.6
>1 MPN/g removed	5,686	36.7
Highly virulent lots removed	300	96.7

*Unadjusted for under-reporting

Table 2. Annual salmonellosis illness estimates separated by consumption scenarios and virulenceprofile at baseline

Consumption Scenario	Annual Illnesses b High-virulence (90% Cl)	y Virulence Profile Low-virulence (90% Cl)	Total
Home, Fresh (n = 3.2x10 ⁹)	3360 (2360, 4480)	116 (43, 1020)	3476 (2403, 5500)
Home, Frozen (n = 1.6x10 ⁹)	2690 (1900, 3590)	93 (35, 819)	2783 (1935, 4409)
Restaurant, Fresh (n = 3.5x10 ⁹)	1250 (882, 1670)	43 (16, 379)	1293 (898, 2049)
Restaurant, Frozen (n = 1.5x10 ⁹)	1380 (968, 1840)	48 (18, 417)	1428 (986, 2257)
Total	8680 (6110, 11580)	300 (112, 2635)	8980 (6222, 14215)

Tornado diagram illustrating sensitivity analysis of ground beef baseline model

MDR Salmonella Removal

Removal of MDR Salmonella:

- 21% decrease in Years of Life Disabled
- 56% decrease in Years of Life Lost

• 45% reduction in Disability Adjusted Life Years

Project Highlights:

~9,000 annual cases of salmonellosis attributable to ground beef

Removing >1 MPN/g resulted in a 36.7% reduction in illnesses Removing >10 MPN/g resulted in a 13.6% reduction in illnesses Removing MDR Salmonella reduces burden of disease by 45%

Presence of highly virulent *Salmonella* was the most impactful model parameter

Research Highlights

Consumption Model	Baseline	Removal of lots >10 MPN/g (% decrease)	Removal of lots >1 MPN/g (% decrease)	After Cross- contamination (% increase)
Ground Beef	8,980	7,759 (13.6)	5 <i>,</i> 686 (36.7)	15,310 (70.5)
Ground Pork	10,590	_	5 <i>,</i> 632 (46.8)	11,851 (11.9)

- >90% annual illnesses attributable to high virulence NTS serotypes
- Significant illness reduction at each pathogen concentration threshold
- Cross-contamination effectively managed after removal of highly contaminated production lots

Impacts for Industry

- Most ground beef is contaminated at low concentrations and majority of Salmonella serotypes not highly virulent.
- Human illnesses are driven by high levels of contamination and highly virulent *Salmonella* serotypes.
- To reduce Salmonella illnesses due to consumption of ground beef, identify and remove products
 - contaminated above threshold of 1MPN/g
 - contaminated with virulent Salmonella serotypes, MDR Salmonella

Data Gaps to Improve Risk Assessment Models

- Dose-response relationships for Salmonella strains
- AMR-specific burden of disease estimates
- Levels of detection for testing
- Cross-contamination coefficients

FOUNDATION FOR MEAT POULTRY RESEARCH EDUCATION

